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Abstract. Here we consider self-avoiding walks (SAWS) on a square lattice for which the 
choice of direction at each step is not entirely random, as in the case of self-avoiding 
random walks. In the case of correlated SAWS, the choice of the direction (consistent with 
the self-avoiding restriction) for the nth step is dependent on that for the ( n  - I)th step, 
while for the anisotropic SAWS, the probability to choose, at any step, the particular 
anisotropic lattice direction is different from that for the other directions. Both the 
extrapolation of exact enumeration results and a small cell real space renormalisation 
group study indicate that finite correlation does not affect the random S A W  critical 
behaviour, while any finite amount of lattice anisotropy induces a crossover to the 'directed' 
SAW critical behaviour. 

1. Introduction 

The long (linear) polymer molecules are quite accurately and successfully modelled 
by the random self-avoiding walks (random SAWS) on lattices where, at each step, a 
random direction for the walk on the lattice is chosen, consistent with the self-avoiding 
restriction which takes into account the 'excluded volume effect'. This self-avoiding 
restriction or the excluded volume effect leads to the well known scaling relations and 
exponents for the statistics of random SAWS or linear polymers (see e.g., de Gennes 
1979). 

Here we consider SAWS for which the choice, at each step, of the direction (con- 
sistent, of course, with the self-avoiding restriction) is not entirely random: rather they 
are biased in two different ways. In the first kind of walk, which we call correlated 
SAWS, the choice of the direction for the nth step is dependent on that for the ( n  - 1)th 
step. For example, one might consider the case of a SAW where the nth step has got 
more (less) affinity to follow the same direction as that for the ( n  - 1)th step, giving 
rise to ferro (antiferro) type correlated SAW. In the second kind of walk considered, 
called anisotropic SAWS, the lattice, on which the walks are performed, is assumed to 
be anisotropic. Consequently, the probability to choose, at any step, the particular 
anisotropic lattice direction is different from that for other lattice directions. In the 
extreme limit of the ferro type correlation for the correlated SAWS we have defined, 
an N stepped SAW on any dimensional lattice becomes a linear chain of length N. 
Consequently the critical behaviour for the SAW statistics crosses over, in this limit of 
correlation, to that of SAWS in one dimension. In the opposite extreme limit of 
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correlation (antiferro type) the same direction is never followed for two successive 
steps. Enumeration results for various two-dimensional lattices suggest (Grassberger 
1982) that this kind of correlated SAWS belong to the same university class as that of 
random SAWS. In the extreme limit of lattice anisotropy where walks are forbidden to 
step in directions other than the particular (anisotropic) lattice direction, the N stepped 
SAW again becomes a linear chain of length N .  While in the opposite extreme limit 
of anisotropy, where the walks are forbidden to step in the particular (anisotropic) 
lattice direction, the SAWS reduce to 'directed' SAWS (Fisher and Sykes 1959, Chakrabarti 
and Manna 1983), for which the critical behaviour is anisotropic and mean-field-like 
(Cardy 1983, Redner and Majid 1983, Szpilka 1983). We will consider here such 
correlated and anisotropic SAWS on a square lattice in the entire range of correlation 
and anisotropy. 

For exact simulation of such correlated SAWS, we simulate all the (random) SAWS 

of step sizes ( N )  upto a finite maximum, and assign a weight a" for each walk 
configuration having n sites through which the walk passes straight. a > 1 thus 
corresponds to ferro type correlation and a < 1 corresponds to antiferro type correlation 
( a  = 1 corresponds to ordinary random SAW).  In the limit a + m, the SAWS become 
one dimensional. In the limit a = 0, the SAWS contributing to the total weight function 
will not have any two successive steps in the same direction. The total weight of the 
zeroth and the second moments of the distribution function are then given by 

GN(a)= c a" 
a l l  SAWS 
of size N 

where g , ( N )  are the number of N stepped SAWS having n sites through which the 
SAW passes straight, without changing the direction, and 

Rh(a) = c R~nd.to.enda" 
all S A W 5  
of size N 

N-I .. . 
= c rZ,(N)a", 

n = O  

where r t (  N )  is the sum of the squares of end-to-end distances of the SAWS having the 
same n, the number of sites through which the SAW passes straight. In the limit a = 1, 
GN(a)  and R : ( a ) / G N ( a )  reduces respectively to the total number of SAWS of N 
steps and the average end-to-end distance. Extrapolating the results for finite step 
sizes N (the maximum value of N = 17 here), we tried to fit these two moments with 
the asymptotic scaling forms 

G N ( a ) - [ p ( a ) l N N Y - I  (3) 

R L ( a ) -  C ( a ) N 2 "  (4) 

and found that the exponents y and v do not change with the correlation weight factor 
a for 0 s  a<< a, showing that finite correlation does not affect the SAW critical 
behaviour. This has also been shown using a small cell real space renormlisation group 
(RSRG) technique. A similar situation also occurs for the random percolation problem, 
where such (quenched) correlation does not affect the critical behaviour (Chakrabarti 
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er a /  1981, Zhang 1982, Tuthill and Klein 1983 and references therein). The phase 
diagram ( p ( a )  against a )  for the correlated SAW, obtained here from extrapolation 
of the exact enumeration results have been compared with that obtained employing 
the RSRG technique. 

To study the critical behaviour of SAWS on anisotropic lattices, we enumerate again 
all the (random) SAWS of a finite number of steps ( N )  on a square lattice and assign 
an anisotropy weight factor a for each step in the particular anisotropic lattice direction 
(e.g., the vertical upward direction). In the limit a = 1, the problem reduces to that 
of ordinary SAWS, while for a = 0 no step in the vertical upward direction is permitted 
and the remaining SAWS, contributing to the total weight function, will be ‘directed’ 
SAWS. Here also we define G,(a) and R L ( a )  as the total weights for the zeroth and 
the second moment of the distribution function respectively, in an exactly similar way 
as in equations ( 1 )  and (2). Here n corresponds to the number of steps in the specified 
(anisotropic) lattice direction (vertical up direction in our example), gn( N )  corresponds 
to the number of N stepped SAWS having n steps in that specified direction and rE( N )  
corresponds to the sum of the squares of their end-to-end distances. We then tried to 
fit our extrapolated simulation results to the asymptotic scaling forms like (3) and (4) 
and the results indicate that the crossover to ‘directed’ SAW critical behaviours occurs 
for any finite amount of lattice anisotropy ( a  # 1) .  The same has been confirmed, 
using a small cell RSRG technique. The phase diagram ( p ( a )  against a )  for the 
anisotropic SAW, obtained by extrapolating the exact enumeration results has been 
compared with that obtained by employing the RSRG technique. 

2. Simulation results for correlated and anisotropic SAWS 

In order io obtain gn( N )  and r z (  N ) ,  as defined in equations ( 1 )  and (2), for correlated 
and anisotropic SAWS, we first enumerate all the (random) SAW configurations, for a 
finite step size N, following Martin (1974). For each of these configurations, we count 
the number ( n )  of sites through which the SAW passes straight (without changing 
direction). Collecting the number of such SAW configurations having the same value 
of n, and summing up the squares of their end-to-end distances, we get g , ( N )  and 
r i ( N )  respectively for the correlated SAW. To determine the same quantities g , ( N )  
and r t (  N )  for anisotropic SAWS, we count, for each (random) SAW configuration, the 
number n of bonds traced in the (specified) anisotropic lattice direction. For step size 
up to 17, the results for g , ( N )  and rE(N)  for both correlated and anisotropic SAWS 

are given in tables l ( a ) ,  l ( b )  and 2(a),  2(b) respectively. It may be noted that for 
correlated SAWS go( N )  and r i (  N )  correspond respectively to the number and sum of 
the squares of the end-to-end distances of N stepped ‘two choice’ SAWS on square 
lattice (Grassberger 1982) and for anisotropic SAWS, go( N )  and ri( N )  correspond 
respectively to the number and sum of the squares of the end-to-end distances of N 
stepped ‘directed’ SAWS on a square lattice (Chakrabarti and Manna 1983, Blote and 
Hilhorst 1983). 

2.1. Analysis of the simulation data 

The values of the scaling exponent y and the connectivity constant p ( a )  (equation (3)) 
are determined, from these simulation results for finite steps N, following the extrapola- 
tion method of Martin (1974). To find the value of the average end-to-end distance 
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exponent v (equation (4)), we calculate 

and 

Plotting these v N ( a )  values against 1/N, we find the average v (for l /N+O)  from 
separate extrapolations for even and odd N values. These average v values are then 
found for different values of a. These results for exponents y and v, for both correlated 
and anisotropic SAWS, for various values of a are shown in figures 1 and 2 respectively. 

For the correlated SAW, y remains practically unchanged (from y = 1.324 for a = I ,  
compared with the exact value 2 (Nienhuis 1982)) with the variation of the correlation 
weight factor a(0 s a =s 2).  The systematic decrease in the y value for the correlated 
SAWS for a + 0 is due to the finite size effect. This was confirmed when, using the 
enumeration results of Grassberger (1982) for his ‘two choice’ SAWS on a square lattice 
(which are the only contributing terms for a = O  in our case) for step sizes N up to 
44, we found the same value of y (see figure 1 ) .  It was seen that for a 2 4 0 ,  the 
exponent y becomes equal to 1 (linear chain value), as expected for these large 
correlations. The average end-to-end distance exponent v for the correlated SAW also 
remains unchanged (remaining very nearly equal to 0.739 for a = 1, compared with 
the exact value v = 0.75 (Nienhuis 1982)) for 0 6  a s 2, as shown in figure 2. It was 
seen that the crossover to linear chain behaviour in v occurs for a 5 100. This shows 
that for finite amount of correlation, the SAW critical behaviour remains unchanged. 
This has been further confirmed in the next section, using small cell RSRG results. 

0.41 

0.1 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
a 

Figure 1. Plot of the values of the exponent y against the weight factor a for correlated 
(0) and anisotropic ( A )  SAWS. 

0.9 I A A A A A  A 

Q Q . O O o  

~ 0 0 0 0 0 0  o ~ e ~ ~ ~ ~  

0.7 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

a 
Figure 2. Plot of the values of the exponent U against the weight factor (I for correlated 
(0) and anisotropic ( A )  SAWS. 
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For anisotropic SAWS, both y and v immediately change as the isotropy of the 
lattice is disturbed (a is different from unity). Although y and v are found respectively 
to decrease and increase gradually and assume the ‘directed’ SAW exponent values 
( y  = v = 1, see e.g., Cardy 1983) for Os a <0.4  and a > 1.9 (see figures 1 and 2), we 
believe, this gradual crossover is a manifestation of the finite size effect. In fact, the 
crossover was observed to become sharper as the step size N was increased (see figure 
3). It may be noted that even for completely ‘directed’ SAWS (CY = 0), the extrapolated 
y value did not reach the ‘directed’ SAW exponent value ( y  = 1).  This is also due to 
the finite size (up to N = 17) of the walks we have simulated, as indicated by figure 
3.  Thus, these enumeration results for anisotropic SAWS indicate that the crossover to 
directed SAW critical behaviour occurs for any finite amount of lattice anisotropy 
(a # 1 ) .  This is also in agreement with the small 
next section. 

V 

0.8 I I 
I I 

I 

0.71 
0 0.2 0.4 0.6 0.8 1.0 

a 
Figure 3. Plot of the values of the exponent v, 
obtained by extrapolating the results for various 
step sizes, (V, 7-16; ., 7-14; A, 7-12) against 
the anisotropy weight factor a (shows the finite 
size effect). 

cell RSRG results, obtained in the 

( a )  I b )  

Figure4. ( a )  Basic cell, of the square lattice, which scales 
to a single bond in each direction under renormalisation. 
(b)‘Wheatstone Bridge’construction; asinglebond ABis 
left after rescaling. 

3. RSRG treatment for correlated and anisotropic SAWS 

The scaling transformations (see e.g., Stanley et a1 1982) for the fugacity (f) of the 
monomers and their correlation or anisotropy parameter (a) are derived here using 
first a reconstruction (following Bernasconi 1978 and Yeomans and Stinchcombe 1979) 
of the square lattice cell, shown in figure 4 ( a ) ,  to a ‘Wheatstone bridge’ type cell as 
shown in figure 4(b), and then rescaling this cell to a single horizontal bond AB (scale 
factor b = 2).  The renormalised bond AB is assigned a renormalised fugacityf’ if SAWS 

starting from A reach B. 
Using the cell shown in figure 4( b),  the recursion relation for f in the case of the 

correlated SAW may be written as 

f = 2 f z a  +2f3, (7) 
where a is the correlation weight factor contributing at each site through which the 
SAW passes straight (strictly speaking, passing straight through a site is only possible 
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in the original cell; figure 4( a ) ) .  Considering an adjacent similar cell, renormalisable 
to another horizontal bond BC, we get the recursion relation for a 

(8) a 'f" = ( 2f2" + 2 f 3 )  [ ( a + a )f2 + ( 1 + a )f3]. 

Similarly, considering the lattice anisotropy in the vertical up direction, the recursion 
relation for f, in the case of anisotropic SAW, can be written, using the cell shown in 
figure 4( b ) ,  as 

f'= 2f2 +f3( 1 + a ) ,  (9) 

where a is here the anisotropy weight factor for each step in the vertical up direction. 
Considering a similar cell (as in figure 4( b ) )  in the vertical direction, the recursion 
relation for a may be written as 

a y  = a 2 ( 2 f z  +2f3). (10) 

It may be noted that all these recursion relations (7)-(8) and (9)-( 10) become degener- 
ate, in the random SAW limit ( a  = l ) ,  which, especially in the case of the correlated 
SAW, is the reason for our choice of the 'Wheatstone bridge' type reconstructed cell. 

The non-trivial fixed points and exponents for these recursion relations are given 
in table 3. The corresponding flow diagrams for correlated and anisotropic SAWS are 
shown in figures 5 and 6 respectively. Both the table (positive crossover exponent 

Table 3. Non-trivial fixed points and exponents for correlated and anisotropic SAWS. 

Type of walk Correlated SAW Anisotropic SAW 
~ ~~ 

a*= I,f*=O.366 a*= l ,f*=0.366 a* = 0, f *  = 0.414 
( p  E I / f*  = 2.732) ( p  = 2.732) ( p  = 2.414) 

Fixed points (FP)  (random SAW FP) (random SAW FP) ('directed' SAW FP) 

End-to-end distance 0.846 
exponent ( U )  

0.846 0.894 

Crossover exponent -1.182 1.628 -X 

( c p , l U )  

f 

0 0.2 0.6 0.6 0.8 1.0 1.2 
a 

Figure 5. Flow diagram for correlated SAWS (RSRG 
equations (7) and (8)). 

a 

Figure 6. Flow diagram for anisotropic SAWS (RSRG 
equations (9)  and (IO)). 
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indicating instability) as well as the flow diagrams support our conclusions in the 
previous section: finite correlation does not affect the SAW critical behaviour, while 
any finite amount of lattice anisotropy induces a cross over to ‘directed’ SAW critical 
behaviour. 

The phase diagrams (plot of p ( a )  against a ) ,  for both correlated and anisotropic 
SAWS, obtained from the above flow diagrams (figures 5 and 6 )  are compared in figure 
7 with those obtained from the extrapolation of exact enumeration results of the 
previous section. 

0 0.2 0.4 0.6 0.8 1.0 1.2 
Cl 

Figure 7. Comparison of the phase diagram ( ~ ( a )  against a) for both correlated (0) and 
anisotropic ( A )  SAWS, obtained using RSRG (full curves) and extrapolating the exact 
enumeration results. 
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