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Abstract. Here we consider self-avoiding walks (SAws) on a square lattice for which the
choice of direction at each step is not entirely random, as in the case of self-avoiding
random walks. In the case of correlated sAws, the choice of the direction (consistent with
the self-avoiding restriction) for the nth step is dependent on that for the (n~ 1)th step,
while for the anisotropic SAws, the probability to choose, at any step, the particular
anisotropic lattice direction is different from that for the other directions. Both the
extrapolation of exact enumeration results and a small cell real space renormalisation
group study indicate that finite correlation does not affect the random SAw critical
behaviour, while any finite amount of lattice anisotropy induces a crossover to the ‘directed’
SAW critical behaviour.

1. Introduction

The long (linear) polymer molecules are quite accurately and successfully modelled
by the random self-avoiding walks (random saws) on lattices where, at each step, a
random direction for the walk on the lattice is chosen, consistent with the self-avoiding
restriction which takes into account the ‘excluded volume effect’. This self-avoiding
restriction or the excluded volume effect leads to the well known scaling relations and
exponents for the statistics of random saws or linear polymers (see e.g., de Gennes
1979).

Here we consider saws for which the choice, at each step, of the direction (con-
sistent, of course, with the self-avoiding restriction) is not entirely random; rather they
are biased in two different ways. In the first kind of walk, which we call correlated
saws, the choice of the direction for the nth step is dependent on that for the (n —1)th
step. For example, one might consider the case of a saw where the nth step has got
more (less) affinity to follow the same direction as that for the (n—1)th step, giving
rise to ferro (antiferro) type correlated saw. In the second kind of walk considered,
called anisotropic saws, the lattice, on which the walks are performed, is assumed to
be anisotropic. Consequently, the probability to choose, at any step, the particular
anisotropic lattice direction is different from that for other lattice directions. In the
extreme limit of the ferro type correlation for the correlated saws we have defined,
an N stepped saw on any dimensional lattice becomes a linear chain of length N.
Consequently the critical behaviour for the saw statistics crosses over, in this limit of
correlation, to that of saws in one dimension. In the opposite extreme limit of
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correlation (antiferro type) the same direction is never followed for two successive
steps. Enumeration results for various two-dimensional lattices suggest (Grassberger
1982) that this kind of correlated saws belong to the same university class as that of
random sAws. In the extreme limit of lattice anisotropy where walks are forbidden to
step in directions other than the particular (anisotropic) lattice direction, the N stepped
sAw again becomes a linear chain of length N. While in the opposite extreme limit
of anisotropy, where the walks are forbidden to step in the particular (anisotropic)
lattice direction, the saws reduce to ‘directed’ saws (Fisher and Sykes 1959, Chakrabarti
and Manna 1983), for which the critical behaviour is anisotropic and mean-field-like
(Cardy 1983, Redner and Majid 1983, Szpilka 1983). We will consider here such
correlated and anisotropic saws on a square lattice in the entire range of correlation
and anisotropy.

For exact simulation of such correlated saws, we simulate all the (random) saws
of step sizes (N) upto a finite maximum, and assign a weight a" for each walk
configuration having n sites through which the walk passes straight. a>1 thus
corresponds to ferro type correlation and o < | corresponds to antiferro type correlation
(@ =1 corresponds to ordinary random saw). In the limit a -0, the saws become
one dimensional. In the limit « =0, the saws contributing to the total weight function
will not have any two successive steps in the same direction. The total weight of the
zeroth and the second moments of the distribution function are then given by

Gnla)= Y a"
all SAWs
of size N

= Nz

-1
n=0

g.(N)a’, (1)

where g,(N) are the number of N stepped saws having n sites through which the
SAw passes straight, without changing the direction, and

2 _ 2 n
RN(a) - Z Rend»lo-enda
all SAWs
of size N

= ngo r2(N)a”, (2)

where r(N) is the sum of the squares of end-to-end distances of the saws having the
same n, the number of sites through which the saw passes straight. In the limit a =1,
Gn(a) and R3(a)/Gn(a) reduces respectively to the total number of saws of N
steps and the average end-to-end distance. Extrapolating the results for finite step
sizes N (the maximum value of N =17 here), we tried to fit these two moments with
the asymptotic scaling forms

Gn(a)~[u(a)]"N"" (3)
Ri(a)~C(a)N? (4)
and found that the exponents y and v do not change with the correlation weight factor
a for 0=<a « o, showing that finite correlation does not affect the saw critical
behaviour. This has also been shown using a small cell real space renormlisation group

(RSRG) technique. A similar situation also occurs for the random percolation problem,
where such (quenched) correlation does not affect the critical behaviour (Chakrabarti
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et al 1981, Zhang 1982, Tuthill and Klein 1983 and references therein). The phase
diagram (w(a) against a) for the correlated saw, obtained here from extrapolation
of the exact enumeration results have been compared with that obtained employing
the RSRG technique.

To study the critical behaviour of saws on anisotropic lattices, we enumerate again
all the (random) saws of a finite number of steps (N) on a square lattice and assign
an anisotropy weight factor « for each step in the particular anisotropic lattice direction
(e.g., the vertical upward direction). In the limit a =1, the problem reduces to that
of ordinary saws, while for a =0 no step in the vertical upward direction is permitted
and the remaining saws, contributing to the total weight function, will be ‘directed’
saws. Here also we define Gy (a) and R%(a) as the total weights for the zeroth and
the second moment of the distribution function respectively, in an exactly similar way
as in equations (1) and (2). Here n corresponds to the number of steps in the specified
(anisotropic) lattice direction (vertical up direction in our example), g,,(N) corresponds
to the number of N stepped saws having n steps in that specified direction and r%(N)
corresponds to the sum of the squares of their end-to-end distances. We then tried to
fit our extrapolated simulation results to the asymptotic scaling forms like (3) and (4)
and the results indicate that the crossover to ‘directed’ saw critical behaviours occurs
for any finite amount of lattice anisotropy (a # 1). The same has been confirmed,
using a small cell RSRG technique. The phase diagram (u(a) against «) for the
anisotropic saw, obtained by extrapolating the exact enumeration results has been
compared with that obtained by employing the RSRG technique.

2. Simulation results for correlated and anisotropic saws

In order to obtain g,(N) and ri(N), as defined in equations (1) and (2), for correlated
and anisotropic saws, we first enumerate all the (random) saw configurations, for a
finite step size N, following Martin (1974). For each of these configurations, we count
the number (n) of sites through which the saw passes straight (without changing
direction). Collecting the number of such saw configurations having the same value
of n, and summing up the squares of their end-to-end distances, we get g,(N) and
ra2{ N} respectively for the correlated saw. To determine the same quantities g,(N)
and r;(N) for anisotropic saws, we count, for each (random) saw configuration, the
number n of bonds traced in the (specified) anisotropic lattice direction. For step size
up to 17, the results for g,(N) and r2(N) for both correlated and anisotropic sAws
are given in tables 1(a), 1(b) and 2(a), 2(b) respectively. It may be noted that for
correlated saws go( N) and r3( N) correspond respectively to the number and sum of
the squares of the end-to-end distances of N stepped ‘two choice’ saws on square
lattice (Grassberger 1982) and for anisotropic saws, go(N) and r3(N) correspond
respectively to the number and sum of the squares of the end-to-end distances of N

stepped ‘directed” saws on a square lattice (Chakrabarti and Manna 1983, Bléte and
Hilhorst 1983).

2.1. Analysis of the simulation data

The values of the scaling exponent y and the connectivity constant u(a) (equation (3))
are determined, from these simulation results for finite steps N, following the extrapola-
tion method of Martin (1974). To find the value of the average end-to-end distance
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exponent v (equation (4)), we calculate

pn(a) = Ri(a)/ Gn(a) (5)
and

vn(a) =3iN(pn+i(@)/ pula)—1). (6)

Plotting these vn(a) values against 1/ N, we find the average v (for 1/N>0) from
separate extrapolations for even and odd N values. These average v values are then
found for different values of a. These results for exponents y and v, for both correlated
and anisotropic saws, for various values of « are shown in figures 1 and 2 respectively.
For the correlated saw, y remains practically unchanged (from y=1.324 fora =1,
compared with the exact value 3 (Nienhuis 1982)) with the variation of the correlation
weight factor a(0< a=<2). The systematic decrease in the y value for the correlated
saws for a >0 is due to the finite size effect. This was confirmed when, using the
enumeration results of Grassberger (1982) for his ‘two choice’ saws on a square lattice
(which are the only contributing terms for @ =0 in our case) for step sizes N up to
44, we found the same value of y (see figure 1). It was seen that for o =40, the
exponent y becomes equal to | (linear chain value), as expected for these large
correlations. The average end-to-end distance exponent » for the correlated saw also
remains unchanged (remaining very nearly equal to 0.739 for @ =1, compared with
the exact value » =0.75 (Nienhuis 1982)) for 0< a <2, as shown in figure 2. It was
seen that the crossover to linear chain behaviour in v occurs for @ = 100. This shows
that for finite amount of correlation, the saw critical behaviour remains unchanged.
This has been further confirmed in the next section, using small cell RSRG results.

0.4

o o © © g @ g ©° 0 0 8 0 0 o o o

0.3 o © :

N a

0 0z 0& 06 08 10 1z 14 16 18 20
o

Figure 1. Plot of the values of the exponent y against the weight factor a for correlated
(O) and anisotropic (A) SAWs.
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Figure 2. Plot of the values of the exponent » against the weight factor a for correlated
(O) and anisotropic (A) sAws.



Critical behaviour of correlated and anisotropic sSAws 3245

For anisotropic saws, both y and v immediately change as the isotropy of the
lattice is disturbed (« is different from unity). Although y and v are found respectively
to decrease and increase gradually and assume the ‘directed’ saw exponent values
(y=v=1, see e.g., Cardy 1983) for 0< a <0.4 and a > 1.9 (see figures 1 and 2), we
believe, this gradual crossover is a manifestation of the finite size effect. In fact, the
crossover was observed to become sharper as the step size N was increased (see figure
3). It may be noted that even for completely ‘directed’ saws (a = 0), the extrapolated
¥ value did not reach the ‘directed’ saw exponent value (¥ =1). This is also due to
the finite size (up to N =17) of the walks we have simulated, as indicated by figure
3. Thus, these enumeration results for anisotropic saws indicate that the crossover to
directed saw critical behaviour occurs for any finite amount of lattice anisotropy
(a#1). This is also in agreement with the small cell RSRG results, obtained in the
next section.

10f

roe
vad
[
-

09f i

R}

rae

0.8+

rme

0.7 . . . P L -

0 0.2 0.4 0.6 .8 1.0
. 0 (a) ib)

Figure 3. Plot of the values of the exponent #, Figure 4. (a) Basiccell, of the square lattice, which scales
obtained by extrapolating the results for various  to asingle bond in each direction under renormalisation.
step sizes, (¥, 7-16; W, 7-14; A, 7-12) against (b)‘Wheatstone Bridge’ construction; asingle bond ABis
the anisotropy weight factor o (shows the finite left after rescaling.

size effect).

3. RSRG treatment for correlated and anisotropic saws

The scaling transformations (see e.g., Stanley et al 1982) for the fugacity (f) of the
monomers and their correlation or anisotropy parameter («) are derived here using
first a reconstruction (following Bernasconi 1978 and Yeomans and Stinchcombe 1979)
of the square lattice cell, shown in figure 4(a), to a ‘Wheatstone bridge’ type cell as
shown in figure 4(b), and then rescaling this cell to a single horizontal bond AB (scale
factor b =2). The renormalised bond AB is assigned a renormalised fugacity f” if saws
starting from A reach B.

Using the cell shown in figure 4(b), the recursion relation for f in the case of the
correlated saw may be written as

=2 a+2f, (7

where « is the correlation weight factor contributing at each site through which the
SAw passes straight (strictly speaking, passing straight through a site is only possible
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in the original cell; figure 4(a)). Considering an adjacent similar cell, renormalisable
to another horizontal bond BC, we get the recursion relation for «

a'f?= (2 +2f) (@’ +a)f* +(1 + a)f’]. (8)

Similarly, considering the lattice anisotropy in the vertical up direction, the recursion
relation for f] in the case of anisotropic sAw, can be written, using the cell shown in
figure 4(b), as

=2 +f(1+a), (9)

where « is here the anisotropy weight factor for each step in the vertical up direction.
Considering a similar cell (as in figure 4(b)) in the vertical direction, the recursion
relation for @ may be written as

a'f = (22 +2f°). (10)

It may be noted that all these recursion relations (7)—(8) and (9)-(10) become degener-
ate, in the random saw limit (a = 1), which, especially in the case of the correlated
saw, is the reason for our choice of the ‘Wheatstone bridge’ type reconstructed cell.

The non-trivial fixed points and exponents for these recursion relations are given
in table 3. The corresponding flow diagrams for correlated and anisotropic saws are
shown in figures 5 and 6 respectively. Both the table (positive crossover exponent

Table 3. Non-trivial fixed points and exponents for correlated and anisotropic SAws.

Type of walk Correlated saw Anisotropic SAW
a*=1, [*=0.366 a*=1,f*=0.366 a¥*=0,*=0414
' . (p=1/*=2732) (u=2.732) (u=2414)
Fixed points (Fp) (random SAw Fp) (random sAW FP) (‘directed’ SAW FP)
End-to-end distance 0.846 0.846 0.894
exponent ()
Crossover exponent -1.182 1.628 —C
{@a/¥)
101 10 \ I
\ /
0.8r 08 \\
0.6 06 \ |
f f \ /
0.4F " \ el
0 0.2 0.4 0.6 0.8 1.0 1.2 0 0.2 0.4 ‘ 0.6 0.8 I 1].0 ‘ 1:2
o o
Figure 5. Flow diagram for correlated SAWs (RSRG Figure 6. Flow diagram for anisotropic SAWs (RSRG

equations (7) and (8)). equations (9) and (10)).



Critical behaviour of correlated and anisotropic sAws 3247

indicating instability) as well as the flow diagrams support our conclusions in the
previous section: finite correlation does not affect the saw critical behaviour, while
any finite amount of lattice anisotropy induces a cross over to ‘directed’ saw critical
behaviour.

The phase diagrams (plot of u(a) against a), for both correlated and anisotropic
sAws, obtained from the above flow diagrams (figures 5 and 6) are compared in figure
7 with those obtained from the extrapolation of exact enumeration results of the
previous section.

3.0

2.5

20

0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 7. Comparison of the phase diagram (u () against «) for both correlated (O) and
anisotropic {(A) saws, obtained using RSRG (full curves) and extrapolating the exact
enumeration results.
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